Resposta de Freqüência do Filtro de Média Corrente A resposta de freqüência de um sistema LTI é a DTFT da resposta de impulso. A resposta de impulso de uma média móvel de L é uma média móvel. Uma vez que o filtro de média móvel é FIR, a resposta de freqüência reduz-se à soma finita We Pode usar a identidade muito útil para escrever a resposta de freqüência como onde temos deixar ae menos jomega. N 0 e M L menos 1. Podemos estar interessados na magnitude desta função para determinar quais freqüências passam pelo filtro sem atenuação e quais são atenuadas. Abaixo está um gráfico da magnitude desta função para L 4 (vermelho), 8 (verde) e 16 (azul). O eixo horizontal varia de zero a pi radianos por amostra. Observe que, em todos os três casos, a resposta de freqüência tem uma característica de passagem baixa. Uma componente constante (frequência zero) na entrada passa através do filtro sem ser atenuada. Certas frequências mais elevadas, como pi / 2, são completamente eliminadas pelo filtro. No entanto, se a intenção era projetar um filtro lowpass, então não temos feito muito bem. Algumas das frequências mais altas são atenuadas apenas por um factor de cerca de 1/10 (para a média móvel de 16 pontos) ou 1/3 (para a média móvel de quatro pontos). Podemos fazer muito melhor do que isso. O gráfico acima foi criado pelo seguinte código de Matlab: omega 0: pi / 400: pi H4 (1/4) (1-exp (-iomega4)) ./ (1-exp (-iomega)) H8 (1/8 ) (1-exp (-iomega8)) ./ (1-exp (-iomega)) lote (omega , Abs (H4) abs (H8) abs (H16)) eixo (0, pi, 0, 1) Copyright 2000- - Universidade da Califórnia, BerkeleyI necessidade de projetar uma média móvel filtro que tem uma freqüência de corte de 7,8 Hz. Eu usei filtros de média móvel antes, mas até onde estou ciente, o único parâmetro que pode ser alimentado é o número de pontos a serem calculados. Como isso pode se relacionar a uma freqüência de corte O inverso de 7,8 Hz é de 130 ms e Im trabalhando com dados que são amostrados a 1000 Hz. Isso implica que eu deveria estar usando um tamanho de janela de filtro média móvel de 130 amostras, ou há algo mais que estou faltando aqui pediu Jul 18 13 at 9:52 O filtro de média móvel é o filtro usado no domínio do tempo para remover O ruído adicionado e também para o propósito de suavização, mas se você usar o mesmo filtro de média móvel no domínio da freqüência para a separação de freqüência, o desempenho será pior. O filtro de média móvel (por vezes conhecido coloquialmente como um filtro de caixa) tem uma resposta de impulso retangular: Ou, afirmado de forma diferente: Lembrando que uma resposta de freqüência de sistemas de tempo discreto é Igual à transformada de Fourier de tempo discreto da sua resposta de impulso, podemos calculá-la da seguinte forma: O que mais interessou para o seu caso é a resposta de magnitude do filtro, H (ômega). Usando algumas manipulações simples, podemos obter isso em uma forma mais fácil de compreender: Isso pode não parecer mais fácil de entender. No entanto, devido à identidade Eulers. Lembre-se que: Portanto, podemos escrever o acima como: Como eu disse antes, o que você está realmente preocupado com a magnitude da resposta de freqüência. Assim, podemos tomar a magnitude do acima para simplificá-lo ainda mais: Nota: Nós somos capazes de soltar os termos exponenciais, porque eles não afetam a magnitude do resultado e 1 para todos os valores de ômega. Como xy xy para quaisquer dois números finitos x e y, podemos concluir que a presença de termos exponenciais não afeta a resposta de magnitude global (em vez disso, eles afetam a resposta de fase de sistemas). A função resultante dentro dos parênteses de magnitude é uma forma de um kernel de Dirichlet. Às vezes é chamado de função periódica sinc, porque se assemelha a função sinc um pouco na aparência, mas é periódica em vez disso. De qualquer forma, uma vez que a definição de freqüência de corte é um pouco underspecified (-3 dB ponto -6 dB ponto primeiro sidelobe nulo), você pode usar a equação acima para resolver o que você precisa. Especificamente, você pode fazer o seguinte: Definir H (omega) para o valor correspondente à resposta do filtro que você deseja na freqüência de corte. Defina ômega igual à frequência de corte. Para mapear uma freqüência de tempo contínuo para o domínio de tempo discreto, lembre-se que omega 2pi frac, onde fs é sua taxa de amostragem. Encontre o valor de N que lhe dá o melhor acordo entre os lados esquerdo e direito da equação. Isso deve ser o comprimento de sua média móvel. Se N é o comprimento da média móvel, então uma frequência de corte aproximada F (válida para N gt 2) na frequência normalizada Ff / fs é: O inverso disso é: Esta fórmula é assintoticamente correta para N grande e tem cerca de 2 para N2 e menos de 0,5 para N4. P. S. Depois de dois anos, aqui finalmente qual foi a abordagem seguida. O resultado foi baseado na aproximação do espectro de amplitude da MA em torno de f0 como uma parábola (série de 2ª ordem) de acordo com MA (Omega) aproximadamente 1 (frac-fra) Omega2 que pode ser feita mais exata perto do cruzamento zero de MA (Omega) Frac por multiplicação de Omega por um coeficiente de obtenção de MA (Omega) aprox. 10.907523 (frac-fra) Omega2 A solução de MA (Omega) - frac 0 dá os resultados acima, onde 2pi F Omega. Tudo o que acima se refere à freqüência de corte -3dB, o sujeito deste post. Às vezes, porém, é interessante obter um perfil de atenuação em banda de parada que é comparável com o de um filtro de baixa passagem IIR de 1ª ordem (LPF de um pólo) com uma determinada freqüência de corte -3dB (tal LPF é também chamado integrador com vazamento, Tendo um pólo não exatamente em DC, mas perto dele). De facto, tanto a MA como a 1ª ordem IIR LPF têm uma inclinação de -20dB / década na banda de paragem (é necessário um N maior do que o utilizado na figura, N32, para ver isto), mas enquanto que MA tem nulos especulares em Fk / N e um evelope 1 / f, o filtro IIR tem apenas um perfil 1 / f. Se se deseja obter um filtro MA com capacidades semelhantes de filtragem de ruído como este filtro IIR, e corresponder às frequências de corte 3dB para ser o mesmo, ao comparar os dois espectros, ele perceberá que a ondulação da banda de parada do filtro MA acaba 3dB abaixo do filtro IIR. Para obter a mesma ondulação de banda de parada (isto é, a mesma atenuação de potência de ruído) como o filtro IIR as fórmulas podem ser modificadas da seguinte forma: Eu encontrei de volta o script Mathematica onde eu calculava o corte para vários filtros, incluindo o MA. O resultado foi baseado na aproximação do espectro MA em torno de f0 como uma parábola de acordo com MA (Omega) Sin (OmegaN / 2) / Sin (Omega / 2) Omega 2piF MA (F) aproximadamente N1 / 6F2 (N-N3) pi2. E derivando o cruzamento com 1 / sqrt a partir daí. Ndash Massimo Jan 17 at 2:08 Filtro low-pass Estes são principalmente notas It wont ser completa em qualquer sentido. Ele existe para conter fragmentos de informações úteis. Pseudocódigo A média móvel exponencialmente ponderada (EWMA) é o nome para o que é provavelmente a mais fácil realização digital, tempo-domínio do (lowpass) de primeira ordem em dados discretos. Este filtro suaviza usando uma média local móvel, o que o torna um seguidor lento do sinal de entrada. Intuitivamente, ele responderá lentamente às mudanças rápidas (o conteúdo de alta freqüência) enquanto ainda segue a tendência geral do sinal (o conteúdo de baixa freqüência). É pesado por uma variável (ver x3b1) para poder variar a sua sensibilidade. Em aplicativos que amostra em um intervalo regular (por exemplo, som) você pode relacionar x3b1 ao conteúdo de freqüência. Nestes casos, muitas vezes você deseja calcular uma série de saída filtrada para uma série de entrada, fazendo um loop através de uma lista fazendo algo como: ou o equivalente: A última forma pode se sentir mais intuitiva / informativa: a mudança na saída filtrada é proporcional ao Quantidade de mudança e pesado pela resistência do filtro x3b1. Ambos podem ajudar a considerar como usar a saída filtrada recente dá a inércia do sistema: Um x3b1 menor (1-x3b1 maior no primeiro) (também faz para RC maior) significa que a saída irá ajustar mais lentamente, e deve mostrar menos ruído Freqüência de corte é menor (verifique)). Um maior x3b1 (menor 1-x3b1) (menor RC) significa que a saída irá ajustar mais rápido (têm menos inércia), mas ser mais sensível ao ruído (desde a freqüência de corte é maior) Onde você só quer o valor mais recente pode evitar armazenar uma grande matriz, fazendo o seguinte para cada nova amostra (muitas vezes um monte de vezes em uma linha, para se certificar de que ajustar o suficiente). Em casos de amostragem não-tão regular, x3b1 está mais relacionado à velocidade de adaptação do que ao conteúdo de freqüência. Sua ainda relevante, mas as notas sobre o conteúdo de freqüência aplicam-se menos estritamente. Você normalmente deseja implementar a matriz / memória como flutuadores - mesmo se você retornar ints - para evitar problemas causados por erros de arredondamento. A maior parte do problema: quando alphadifference (ele mesmo uma multiplicação flutuante) é menor que 1, torna-se 0 em um elenco (truncatng) para um inteiro. Por exemplo, quando alfa é 0,01, então as diferenças de sinal menores que 100 farão um ajuste de 0 (via truncamento inteiro), então o filtro nunca se ajustaria ao valor ADC real. EWMA tem a palavra exponencial, porque cada nova saída filtrada usa efetivamente todos os valores antes dele, e efetivamente com pesos decrescentes exponencialmente. Veja os links da wikipedia para mais discussão. Um exemplo gráfico: Uma captura de tela do arduinoscópio - um gráfico em movimento, com as amostras mais recentes à esquerda. O sinal em bruto na parte superior é de poucos segundos de uma amostragem ADC de um pino flutuante, com um dedo tocando de vez em quando. Os outros são versões lowpassed dele, em pontos fortes crescentes. Algumas coisas a notar sobre isso: o lento ajuste exponencial para passo-como respostas (bem como um capacitor de carregamento - rápido intially, então mais lento e mais lento) a supressão de single grandes picos / desvios. Que certamente é possível filtrar muito duro (embora esse julgamento depende muito da velocidade de amostragem e da adaptação / conteúdo / frequências de sua finalidade necessidades). Na segunda imagem, a oscilação de gama completa sai pela metade não tanto por causa da filtragem, mas também em grande parte porque a maioria das amostras em bruto por aí estão saturadas em qualquer extremidade da gama de ADCs. Em x3b1, x3c4 ea freqüência de corte Este artigo / seção é um stub x2014 provavelmente uma pilha de notas semi-classificadas, não é bem verificado, então pode ter bits incorretos. (Sinta-se livre para ignorar, corrigir ou me dizer) x3b1 é o fator de suavização, teoricamente entre 0,0 e 1,0, na prática geralmente lt0,2 e, muitas vezes, lt0,1 ou menor, porque acima você está apenas fazendo qualquer filtragem. Em DSP é frequentemente baseado em: x394 t. Regularmente escrito dt. O intervalo de tempo entre as amostras (recíproco da taxa de amostragem) uma escolha de constante de tempo x3c4 (tau), também conhecido como RC (este último parece ser uma referência a um circuito resistor-mais-capacitor que também faz passagem baixa. O capacitor carrega para Se você escolher um RC perto de dt você obterá alphas acima de 0,5, e também uma freqüência de corte que está perto da freqüência nyquist (acontece em 0.666 (verificar)), que filtra tão pouco que torna o filtro de forma justa Sem sentido. Na prática youll muitas vezes escolher um RC que é pelo menos alguns múltiplos de dt, o que significa que x3b1 é da ordem de 0,1 ou menos. Quando a amostragem acontece estritamente regular, como é para o som e muitas outras aplicações DSP, Por exemplo, quando RC0.002sec, o cutoff está em At 200Hz, 2000Hz, e 20000Hz amostragem, que faz para alfas de 0,7, 0,2 e 0,024, respectivamente. (Com a mesma velocidade de amostragem: menor alfa é, mais lenta a adaptação a novos valores e menor a frequência de corte efetiva) (verifique) Para uma passagem baixa de primeira ordem: em freqüências mais baixas, a resposta é quase completamente plana Freqüência a resposta é -3dB (começou a diminuir em uma flexão suave / joelho) em freqüências mais altas ele cai em 6db / oitava (20dB / década) As variações de ordem mais alta caem mais rápido e têm um joelho mais duro. Observe que haverá também um deslocamento de fase, que fica atrás da entrada. Depende da frequência que começa mais cedo do que o falloff da amplitude, e será -45 graus na freqüência do joelho (verifique). Arduino exemplo Este artigo / seção é um esboço x2014 provavelmente uma pilha de meia-classificados notas, não é bem-verificado assim pode ter bits incorretos. (Sinta-se livre para ignorar, corrigir ou me dizer) Esta é uma versão de uma única peça de memória, para quando você está interessado apenas no (mais recente) valor de saída. Resposta de frequência semiesparada do filtro de média móvel e do filtro FIR Compare a resposta em frequência do filtro de média móvel com a do filtro FIR regular. Defina os coeficientes do filtro FIR regular como uma seqüência de 1s escalado. O fator de escala é 1 / filterLength. Crie um objeto de sistema dsp. FIRFilter e defina seus coeficientes para 1/40. Para calcular a média móvel, crie um objeto dsp. MovingAverage System com uma janela deslizante de comprimento 40 para calcular a média móvel. Ambos os filtros têm os mesmos coeficientes. A entrada é Gaussian ruído branco com uma média de 0 e um desvio padrão de 1. Visualize a resposta de freqüência de ambos os filtros usando fvtool. As respostas de freqüência correspondem exatamente, o que prova que o filtro de média móvel é um caso especial do filtro FIR. Para comparação, veja a resposta de freqüência do filtro sem ruído. Compare a resposta de freqüência dos filtros com a do filtro ideal. Você pode ver que o lobo principal no passband não é liso e as ondinhas no stopband não são limitadas. A resposta de frequência dos filtros de média móvel não corresponde à resposta em frequência do filtro ideal. Para realizar um filtro FIR ideal, altere os coeficientes de filtro para um vetor que não seja uma seqüência de 1s escalado. A resposta de freqüência do filtro muda e tende a se aproximar da resposta do filtro ideal. Desenhe os coeficientes do filtro com base em especificações de filtro predefinidas. Por exemplo, projete um filtro FIR equiripple com uma freqüência de corte normalizada de 0,1, uma ondulação de banda passante de 0,5 e uma atenuação de banda de interrupção de 40 dB. Use fdesign. lowpass para definir as especificações do filtro eo método de design para projetar o filtro. A resposta dos filtros na banda de acesso é quase plana (semelhante à resposta ideal) e a banda de interrupção tem recursos limitados. MATLAB e Simulink são marcas registradas da The MathWorks, Inc. Consulte www. mathworks / marcas comerciais para obter uma lista de outras marcas comerciais de propriedade da The MathWorks, Inc. Outros produtos ou marcas são marcas comerciais ou marcas registradas de seus respectivos proprietários. Selecione seu país Como outros já mencionaram, você deve considerar um filtro IIR (resposta de impulso infinito) em vez do filtro FIR (resposta de impulso finito) que você está usando agora. Há mais, mas à primeira vista os filtros FIR são implementados como convoluções explícitas e filtros IIR com equações. O filtro IIR especial que eu uso muito em microcontroladores é um filtro de passa-baixa de pólo único. Este é o equivalente digital de um simples filtro analógico R-C. Para a maioria das aplicações, elas terão melhores características do que o filtro de caixa que você está usando. A maioria dos usos de um filtro de caixa que eu encontrei são o resultado de alguém não prestar atenção na classe de processamento de sinal digital, e não como resultado de precisar de suas características particulares. Se você só quer atenuar as altas freqüências que você sabe que são ruído, um único pólo filtro passa-baixo é melhor. A melhor maneira de implementar um digitalmente em um microcontrolador é geralmente: FILT lt - FILT FF (NEW - FILT) FILT é um pedaço de estado persistente. Esta é a única variável persistente que você precisa para calcular este filtro. NEW é o novo valor que o filtro está sendo atualizado com esta iteração. FF é a fracção do filtro. Que ajusta o peso do filtro. Olhe para este algoritmo e veja que para FF 0 o filtro é infinitamente pesado desde a saída nunca muda. Para FF 1, seu realmente nenhum filtro em tudo desde que a saída apenas segue a entrada. Os valores úteis estão no meio. Em sistemas pequenos você escolhe FF para ser 1/2 N de modo que a multiplicação por FF possa ser realizada como um deslocamento para a direita por N bits. Por exemplo, FF pode ser 1/16 e multiplicar por FF, portanto, um deslocamento para a direita de 4 bits. Caso contrário, este filtro precisa apenas de uma subtração e uma adição, embora os números geralmente precisam ser mais largos do que o valor de entrada (mais na precisão numérica em uma seção separada abaixo). Eu costumo tomar leituras A / D significativamente mais rápido do que eles são necessários e aplicar dois desses filtros em cascata. Este é o equivalente digital de dois filtros R-C em série, e atenua por 12 dB / oitava acima da freqüência de rolloff. No entanto, para as leituras A / D é geralmente mais relevante olhar para o filtro no domínio do tempo, considerando sua resposta passo. Isso indica a rapidez com que seu sistema verá uma alteração quando a coisa que você está medindo muda. Para facilitar a concepção destes filtros (que significa apenas escolher FF e decidir quantos deles para cascatear), eu uso o meu programa FILTBITS. Você especifica o número de bits de deslocamento para cada FF na série de filtros em cascata e calcula a resposta da etapa e outros valores. Na verdade eu costumo correr isso através do meu script wrapper PLOTFILT. Isso executa FILTBITS, que faz um arquivo CSV, e depois traça o arquivo CSV. Por exemplo, aqui está o resultado de PLOTFILT 4 4: Os dois parâmetros para PLOTFILT significa que haverá dois filtros em cascata do tipo descrito acima. Os valores de 4 indicam o número de bits de mudança para realizar a multiplicação por FF. Os dois valores de FF são, portanto, 1/16 neste caso. O traço vermelho é a resposta da etapa da unidade, e é a coisa principal a olhar. Por exemplo, isto diz-lhe que se a entrada muda instantaneamente, a saída do filtro combinado estabelecerá a 90 do novo valor em 60 iterações. Se você se preocupa com 95 settling tempo, então você tem que esperar cerca de 73 iterações, e por 50 tempo de resolução apenas 26 iterações. O traço verde mostra a saída de um único pico de amplitude total. Isto dá-lhe alguma idéia da supressão de ruído aleatória. Parece que nenhuma amostra irá causar mais do que uma alteração de 2,5 na saída. O traço azul é dar uma sensação subjetiva do que este filtro faz com o ruído branco. Este não é um teste rigoroso, uma vez que não há garantia o que exatamente o conteúdo foi dos números aleatórios escolhidos como a entrada de ruído branco para esta execução de PLOTFILT. Seu somente para dar-lhe uma sensação áspera de quanto será squashed e de como liso é. PLOTFILT, talvez FILTBITS, e muitas outras coisas úteis, especialmente para o desenvolvimento de firmware PIC está disponível no software PIC Development Tools release na minha página de downloads de Software. Adicionado sobre precisão numérica eu vejo dos comentários e agora uma nova resposta que há interesse em discutir o número de bits necessários para implementar este filtro. Observe que a multiplicação por FF criará Log 2 (FF) novos bits abaixo do ponto binário. Em sistemas pequenos, FF é geralmente escolhido para ser 1/2 N para que este multiplicar é realmente realizado por um deslocamento à direita de N bits. FILT é geralmente um inteiro de ponto fixo. Observe que isso não altera nenhuma das matemáticas do ponto de vista dos processadores. Por exemplo, se você estiver filtrando leituras A / D de 10 bits e N 4 (FF 1/16), então você precisará de 4 bits de fração abaixo das leituras A / D inteiras de 10 bits. Um processadores mais, youd estar fazendo operações de 16 bits inteiro devido às leituras de 10 bit A / D. Neste caso, você ainda pode fazer exatamente as mesmas operações de 16 bits inteiros, mas comece com as leituras A / D esquerda deslocada por 4 bits. O processador não sabe a diferença e não precisa. Fazer a matemática em inteiros inteiros de 16 bits funciona se você os considera 12,4 pontos fixos ou inteiros verdadeiros de 16 bits (16,0 ponto fixo). Em geral, você precisa adicionar N bits cada pólo de filtro se você não quiser adicionar ruído devido à representação numérica. No exemplo acima, o segundo filtro de dois teria 1044 18 bits para não perder informações. Na prática em uma máquina de 8 bits que significa youd usar valores de 24 bits. Tecnicamente apenas o segundo pólo de dois precisaria do valor mais amplo, mas para a simplicidade do firmware eu costumo usar a mesma representação, e, portanto, o mesmo código, para todos os pólos de um filtro. Normalmente eu escrevo uma sub-rotina ou macro para executar uma operação de pólo de filtro, em seguida, aplicar isso a cada pólo. Se uma subrotina ou macro depende se os ciclos ou a memória do programa são mais importantes nesse projeto específico. De qualquer maneira, eu uso algum estado zero para passar NOVO para a subrotina / macro, que atualiza FILT, mas também carrega isso para o mesmo estado zero NOVO foi dentro Isso torna mais fácil para aplicar vários pólos desde o FILT atualizado de um pólo é O NOVO do próximo. Quando uma sub-rotina, é útil ter um ponteiro apontar para FILT no caminho, que é atualizado para logo após FILT na saída. Desta forma, a sub-rotina opera automaticamente em filtros consecutivos na memória se for chamada várias vezes. Com uma macro você não precisa de um ponteiro desde que você passa no endereço para operar em cada iteração. Exemplos de código Aqui está um exemplo de uma macro como descrito acima para um PIC 18: E aqui está uma macro semelhante para um PIC 24 ou dsPIC 30 ou 33: Ambos estes exemplos são implementados como macros usando o meu pré-processador de assembler PIC. Que é mais capaz do que qualquer um das instalações macro incorporadas. Clabacchio: Outra questão que eu deveria ter mencionado é a implementação de firmware. Você pode escrever uma sub-rotina de filtro passa-baixa de um único pólo uma vez, depois aplicá-la várias vezes. Na verdade eu costumo escrever tal sub-rotina para ter um ponteiro na memória para o estado do filtro, em seguida, tê-lo avançar o ponteiro para que ele pode ser chamado em sucessão facilmente para realizar filtros multi-polo. Ndash Olin Lathrop Apr 20 12 at 15:03 1. muito obrigado por suas respostas - todas elas. Eu decidi usar este filtro IIR, mas este filtro não é usado como um filtro LowPass padrão, uma vez que eu preciso para a média de valores de contador e compará-los para detectar alterações em um determinado intervalo. Uma vez que estes Valores van ser de dimensões muito diferentes, dependendo de hardware que eu queria tomar uma média, a fim de ser capaz de reagir a estas alterações Hardware específicas automaticamente. Ndash sensslen May 21 12 at 12:06 Se você pode viver com a restrição de um poder de dois números de itens para a média (ou seja, 2,4,8,16,32 etc), então a divisão pode ser feita de forma fácil e eficiente em um Micro de baixo desempenho sem divisão dedicada, pois pode ser feito como um deslocamento bit. Cada turno é um poder de dois, por exemplo: O OP pensou que ele tinha dois problemas, dividindo em um PIC16 e memória para seu buffer de anel. Esta resposta mostra que a divisão não é difícil. É verdade que ele não trata o problema da memória, mas o sistema SE permite respostas parciais, e os usuários podem tirar algo de cada resposta por si mesmos, ou mesmo editar e combinar outras respostas. Uma vez que algumas das outras respostas exigem uma operação de divisão, elas são igualmente incompletas, uma vez que não mostram como efetivamente conseguir isso em um PIC16. Ndash Martin Apr 20 12 at 13:01 Há uma resposta para um verdadeiro filtro de média móvel (aka boxcar filtro) com menos requisitos de memória, se você não mente downsampling. É chamado um filtro integrador-pente em cascata (CIC). A idéia é que você tem um integrador que você toma as diferenças de um período de tempo, eo dispositivo de economia de memória chave é que por downsampling, você não tem que armazenar cada valor do integrador. Ele pode ser implementado usando o seguinte pseudocódigo: Seu comprimento médio móvel efetivo é decimationFactorstatesize, mas você só precisa manter em torno de amostras statesize. Obviamente, você pode obter um melhor desempenho se o seu statesize e decimationFactor são poderes de 2, de modo que a divisão e os operadores restantes são substituídos por turnos e máscara-ands. Postscript: Eu concordo com Olin que você deve sempre considerar filtros IIR simples antes de um filtro de média móvel. Se você não precisa de freqüência-nulos de um filtro de vagão, um filtro de passa-baixa de 1 pólo ou de 2 pólos provavelmente funcionará bem. Por outro lado, se você estiver filtrando para fins de decimação (tomando uma alta taxa de amostragem de entrada e de média para o seu uso por um processo de baixa taxa), em seguida, um CIC filtro pode ser exatamente o que você está procurando. (Especialmente se você pode usar statesize1 e evitar o ringbuffer completamente com apenas um valor único integrador anterior) Theres alguma análise em profundidade da matemática por trás usando o filtro IIR de primeira ordem que Olin Lathrop já descreveu mais sobre a troca de pilha Digital Signal Processing (Inclui muitas imagens bonitas.) A equação para este filtro IIR é: Isso pode ser implementado usando apenas inteiros e nenhuma divisão usando o código a seguir (pode precisar de alguma depuração como eu estava digitando na memória.) Este filtro aproxima uma média móvel de Os últimos K amostras, definindo o valor de alfa para 1 / K. Faça isso no código anterior, definindo BITS para LOG2 (K), ou seja, para K 16 set BITS para 4, para K 4 set BITS para 2, etc (eu verificar o código listado aqui logo que eu recebo uma alteração e Editar esta resposta, se necessário.) Responder Jun 23 12 at 4:04 Heres um filtro passa-baixo de um único pólo (média móvel, com freqüência de corte CutoffFrequency). Muito simples, muito rápido, funciona muito bem, e quase nenhuma sobrecarga de memória. Nota: Todas as variáveis têm escopo além da função de filtro, exceto o passado em newInput Nota: Este é um filtro de etapa única. Várias etapas podem ser conectadas em cascata para aumentar a nitidez do filtro. Se você usar mais de uma etapa, você terá que ajustar DecayFactor (como se relaciona com a Cutoff-Frequency) para compensar. E, obviamente, tudo o que você precisa é dessas duas linhas colocadas em qualquer lugar, eles não precisam de sua própria função. Este filtro tem um tempo de aceleração antes que a média móvel represente a do sinal de entrada. Se você precisar ignorar esse tempo de aceleração, basta inicializar MovingAverage para o primeiro valor de newInput em vez de 0 e esperar que o primeiro newInput não seja um outlier. (CutoffFrequency / SampleRate) tem um intervalo entre 0 e 0,5. DecayFactor é um valor entre 0 e 1, geralmente perto de 1. Flutuadores de precisão única são bons o suficiente para a maioria das coisas, eu só prefiro dobra. Se você precisar ficar com números inteiros, você pode converter DecayFactor e Amplitude Factor em inteiros fracionários, em que o numerador é armazenado como o inteiro, eo denominador é um número inteiro de 2 (assim você pode bit-shift para a direita como o Denominador em vez de ter que dividir durante o loop de filtro). Por exemplo, se você usar DecayFactor 0,99, e você quiser usar números inteiros, você pode definir DecayFactor 0,99 65536 64881. E então, sempre que você multiplicar por DecayFactor em seu loop de filtro, basta deslocar o resultado 16. Para obter mais informações sobre isso, um excelente livro thats Online, capítulo 19 sobre filtros recursivos: www. dspguide / ch19.htm PS Para o paradigma da média móvel, uma abordagem diferente para definir DecayFactor e AmplitudeFactor que pode ser mais relevante para suas necessidades, vamos dizer que você quer o anterior, cerca de 6 itens média juntos, fazê-lo discretamente, youd adicionar 6 itens e dividir por 6, então Você pode definir o AmplitudeFactor para 1/6 e DecayFactor para (1.0 - AmplitudeFactor). Respondeu May 14 12 at 22:55 Todo mundo tem comentado completamente sobre a utilidade de IIR vs FIR, e na divisão de poder-de-dois. Id gostaria de dar alguns detalhes de implementação. O abaixo funciona bem em pequenos microcontroladores sem FPU. Não há multiplicação, e se você manter N um poder de dois, toda a divisão é de ciclo único bit-shifting. Tampão de toque FIR básico: mantém um buffer de execução dos últimos N valores e uma Soma em execução de todos os valores no buffer. Cada vez que uma nova amostra entra, subtraia o valor mais antigo no buffer de SUM, substitua-o pela nova amostra, adicione a nova amostra à SUM e a saída SUM / N. Tampão de anel IIR modificado: mantenha uma SUM corrente dos últimos N valores. Cada vez que uma nova amostra chega, SUM - SUM / N, adicione a nova amostra e a saída SUM / N. Se I39m lendo você direito, você está descrevendo um filtro IIR de primeira ordem, o valor que você está subtraindo isn39t o valor mais antigo que está caindo, mas é, em vez disso, a média dos valores anteriores. Os filtros IIR de primeira ordem podem certamente ser úteis, mas não tenho certeza do que você quer dizer quando sugere que a saída é a mesma para todos os sinais periódicos. A uma taxa de amostragem de 10KHz, a alimentação de uma onda quadrada de 100Hz em um filtro de caixa de 20 estágios produzirá um sinal que sobe uniformemente para 20 amostras, senta alto para 30, cai uniformemente para 20 amostras e senta baixo para 30. Uma primeira ordem IIR. Ndash supercat Aug 28 13 às 15:31 vai produzir uma onda que começa bruscamente a subir e gradualmente nivela perto (mas não no) máximo de entrada, então começa bruscamente a cair e nivela gradualmente perto (mas não) o mínimo de entrada. Comportamento muito diferente. Uma questão é que uma média móvel simples pode ou não ser útil. Com um filtro IIR, você pode obter um bom filtro com relativamente poucos calcs. O FIR que você descreve só pode lhe dar um retângulo no tempo - um sinc em freq - e você não pode gerenciar os lobos laterais. Pode valer a pena jogar algumas multiplicações inteiras para torná-la uma simpática e simétrica sintonia FIR se você pode poupar os carrapatos do relógio. Ndash Scott Seidman Aug 29 13 às 13:50 ScottSeidman: Não há necessidade de multiplicar se um simplesmente tem cada estágio do FIR ou saída a média da entrada para esse estágio e seu valor armazenado anterior, e depois armazenar a entrada (se tiver O intervalo numérico, pode-se usar a soma em vez da média). Se isso é melhor do que um filtro de caixa depende da aplicação (a resposta de passo de um filtro de caixa com um atraso total de 1ms, por exemplo, terá um pico d2 / dt desagradável quando a mudança de entrada e novamente 1ms mais tarde, mas terá O mínimo possível d / dt para um filtro com um atraso total de 1 ms). Como disse mikeselectricstuff, se você realmente precisa reduzir suas necessidades de memória, e você não se importa sua resposta ao impulso é uma exponencial (em vez de um pulso retangular), eu iria para um filtro de média móvel exponencial . Eu uso-os extensivamente. Com esse tipo de filtro, você não precisa de nenhum buffer. Você não tem que armazenar N amostras passadas. Apenas um. Assim, seus requisitos de memória são cortados por um fator de N. Além disso, você não precisa de qualquer divisão para isso. Somente multiplicações. Se você tiver acesso a aritmética de ponto flutuante, use multiplicações de ponto flutuante. Caso contrário, faça multiplicações inteiras e desloque para a direita. No entanto, estamos em 2012, e eu recomendo que você use compiladores (e MCUs) que permitem que você trabalhe com números de ponto flutuante. Além de ser mais memória eficiente e mais rápido (você não tem que atualizar itens em qualquer buffer circular), eu diria que é também mais natural. Porque uma resposta de impulso exponencial corresponde melhor à maneira como a natureza se comporta, na maioria dos casos. Um problema com o filtro IIR como quase tocado por olin e supercat mas aparentemente desconsiderado por outros é que o arredondamento para baixo introduz alguma imprecisão (e potencialmente viés / truncamento). Assumindo que N é uma potência de dois, e apenas aritmética inteira é usada, o deslocamento direto sistematicamente elimina os LSBs da nova amostra. Isso significa que quanto tempo a série poderia ser, a média nunca vai levar esses em conta. Por exemplo, suponha uma série lentamente decrescente (8,8,8,8,7,7,7,7,6,6) e suponha que a média é realmente 8 no início. A amostra do punho 7 trará a média para 7, independentemente da intensidade do filtro. Apenas para uma amostra. Mesma história para 6, etc. Agora pense no oposto. A série sobe. A média ficará em 7 para sempre, até que a amostra seja grande o suficiente para fazer a mudança. Claro, você pode corrigir o viés adicionando 1 / 2N / 2, mas isso não vai realmente resolver o problema de precisão. Nesse caso a série decrescente permanecerá para sempre em 8 até que a amostra seja 8-1 / 2 (N / 2). Para N4, por exemplo, qualquer amostra acima de zero manterá a média inalterada. Acredito que uma solução para isso implicaria manter um acumulador dos LSBs perdidos. Mas eu não fui longe o suficiente para ter o código pronto, e não tenho certeza que não iria prejudicar o poder IIR em alguns outros casos de série (por exemplo, se 7,9,7,9 seria média para 8 então). Olin, sua cascata de dois estágios também precisaria de alguma explicação. Você quer dizer segurando dois valores médios com o resultado do primeiro alimentado para o segundo em cada iteração. Qual é o benefício deste
No comments:
Post a Comment